3.4.12 \(\int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\) [312]

3.4.12.1 Optimal result
3.4.12.2 Mathematica [C] (verified)
3.4.12.3 Rubi [A] (warning: unable to verify)
3.4.12.4 Maple [B] (verified)
3.4.12.5 Fricas [A] (verification not implemented)
3.4.12.6 Sympy [F(-1)]
3.4.12.7 Maxima [A] (verification not implemented)
3.4.12.8 Giac [F(-1)]
3.4.12.9 Mupad [F(-1)]

3.4.12.1 Optimal result

Integrand size = 26, antiderivative size = 210 \[ \int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=-\frac {35 i a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{128 \sqrt {2} d}+\frac {35 i a^3}{128 d \sqrt {a+i a \tan (c+d x)}}-\frac {i a^6}{6 d (a-i a \tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}}-\frac {7 i a^5}{48 d (a-i a \tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}}-\frac {35 i a^4}{192 d (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}} \]

output
-35/256*I*a^(5/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/d* 
2^(1/2)+35/128*I*a^3/d/(a+I*a*tan(d*x+c))^(1/2)-1/6*I*a^6/d/(a+I*a*tan(d*x 
+c))^(1/2)/(a-I*a*tan(d*x+c))^3-7/48*I*a^5/d/(a+I*a*tan(d*x+c))^(1/2)/(a-I 
*a*tan(d*x+c))^2-35/192*I*a^4/d/(a+I*a*tan(d*x+c))^(1/2)/(a-I*a*tan(d*x+c) 
)
 
3.4.12.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.12 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.25 \[ \int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {i a^3 \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},4,\frac {1}{2},\frac {1}{2} (1+i \tan (c+d x))\right )}{8 d \sqrt {a+i a \tan (c+d x)}} \]

input
Integrate[Cos[c + d*x]^6*(a + I*a*Tan[c + d*x])^(5/2),x]
 
output
((I/8)*a^3*Hypergeometric2F1[-1/2, 4, 1/2, (1 + I*Tan[c + d*x])/2])/(d*Sqr 
t[a + I*a*Tan[c + d*x]])
 
3.4.12.3 Rubi [A] (warning: unable to verify)

Time = 0.33 (sec) , antiderivative size = 206, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {3042, 3968, 52, 52, 52, 61, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sec (c+d x)^6}dx\)

\(\Big \downarrow \) 3968

\(\displaystyle -\frac {i a^7 \int \frac {1}{(a-i a \tan (c+d x))^4 (i \tan (c+d x) a+a)^{3/2}}d(i a \tan (c+d x))}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^7 \left (\frac {7 \int \frac {1}{(a-i a \tan (c+d x))^3 (i \tan (c+d x) a+a)^{3/2}}d(i a \tan (c+d x))}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}}\right )}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^7 \left (\frac {7 \left (\frac {5 \int \frac {1}{(a-i a \tan (c+d x))^2 (i \tan (c+d x) a+a)^{3/2}}d(i a \tan (c+d x))}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}}\right )}{d}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {i a^7 \left (\frac {7 \left (\frac {5 \left (\frac {3 \int \frac {1}{(a-i a \tan (c+d x)) (i \tan (c+d x) a+a)^{3/2}}d(i a \tan (c+d x))}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}}\right )}{d}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {i a^7 \left (\frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {\int \frac {1}{(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}d(i a \tan (c+d x))}{2 a}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}}\right )}{d}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {i a^7 \left (\frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {\int \frac {1}{a^2 \tan ^2(c+d x)+2 a}d\sqrt {i \tan (c+d x) a+a}}{a}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {i a^7 \left (\frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {i \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2}}\right )}{\sqrt {2} a^{3/2}}-\frac {1}{a \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {1}{2 a (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}\right )}{8 a}+\frac {1}{4 a (a-i a \tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}}\right )}{12 a}+\frac {1}{6 a (a-i a \tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}}\right )}{d}\)

input
Int[Cos[c + d*x]^6*(a + I*a*Tan[c + d*x])^(5/2),x]
 
output
((-I)*a^7*(1/(6*a*(a - I*a*Tan[c + d*x])^3*Sqrt[a + I*a*Tan[c + d*x]]) + ( 
7*(1/(4*a*(a - I*a*Tan[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]]) + (5*(1/(2* 
a*(a - I*a*Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]]) + (3*((I*ArcTan[(Sqrt 
[a]*Tan[c + d*x])/Sqrt[2]])/(Sqrt[2]*a^(3/2)) - 1/(a*Sqrt[a + I*a*Tan[c + 
d*x]])))/(4*a)))/(8*a)))/(12*a)))/d
 

3.4.12.3.1 Defintions of rubi rules used

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3968
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(a^(m - 2)*b*f)   Subst[Int[(a - x)^(m/2 - 1)*(a + x 
)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && 
 EqQ[a^2 + b^2, 0] && IntegerQ[m/2]
 
3.4.12.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 932 vs. \(2 (170 ) = 340\).

Time = 5.97 (sec) , antiderivative size = 933, normalized size of antiderivative = 4.44

\[\text {Expression too large to display}\]

input
int(cos(d*x+c)^6*(a+I*a*tan(d*x+c))^(5/2),x)
 
output
1/768*I/d*(tan(d*x+c)-I)^2*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*cos(d*x+c)^2*(42 
0*I*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))* 
(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^3-315*I*(-cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+ 
1))^(1/2))*cos(d*x+c)-105*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)+420*arctanh(sin(d*x+c)/(cos(d*x 
+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*(-cos(d 
*x+c)/(cos(d*x+c)+1))^(1/2)+420*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arcta 
n((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2*sin(d*x+c)-420*cos(d*x+ 
c)^3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2))+210*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos( 
d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2+210*I*(-cos(d*x 
+c)/(cos(d*x+c)+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d 
*x+c)*sin(d*x+c)+210*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d 
*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*sin(d*x+c)+ 
448*I*cos(d*x+c)^3*sin(d*x+c)-210*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arcta 
n((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-320*cos(d*x+c)^4-105*I* 
(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos 
(d*x+c)/(cos(d*x+c)+1))^(1/2))-105*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arct 
anh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d...
 
3.4.12.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 309, normalized size of antiderivative = 1.47 \[ \int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=-\frac {{\left (105 \, \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} \log \left (\frac {4 \, {\left (a^{3} e^{\left (i \, d x + i \, c\right )} - \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{5}}{d^{2}}} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2}}\right ) - 105 \, \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} \log \left (\frac {4 \, {\left (a^{3} e^{\left (i \, d x + i \, c\right )} - \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{5}}{d^{2}}} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2}}\right ) - \sqrt {2} {\left (-8 i \, a^{2} e^{\left (8 i \, d x + 8 i \, c\right )} - 46 i \, a^{2} e^{\left (6 i \, d x + 6 i \, c\right )} - 125 i \, a^{2} e^{\left (4 i \, d x + 4 i \, c\right )} - 39 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 48 i \, a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{768 \, d} \]

input
integrate(cos(d*x+c)^6*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")
 
output
-1/768*(105*sqrt(1/2)*sqrt(-a^5/d^2)*d*e^(I*d*x + I*c)*log(4*(a^3*e^(I*d*x 
 + I*c) - sqrt(2)*sqrt(1/2)*sqrt(-a^5/d^2)*(I*d*e^(2*I*d*x + 2*I*c) + I*d) 
*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/a^2) - 105*sqrt(1/2)* 
sqrt(-a^5/d^2)*d*e^(I*d*x + I*c)*log(4*(a^3*e^(I*d*x + I*c) - sqrt(2)*sqrt 
(1/2)*sqrt(-a^5/d^2)*(-I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt(a/(e^(2*I*d*x + 
 2*I*c) + 1)))*e^(-I*d*x - I*c)/a^2) - sqrt(2)*(-8*I*a^2*e^(8*I*d*x + 8*I* 
c) - 46*I*a^2*e^(6*I*d*x + 6*I*c) - 125*I*a^2*e^(4*I*d*x + 4*I*c) - 39*I*a 
^2*e^(2*I*d*x + 2*I*c) + 48*I*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(- 
I*d*x - I*c)/d
 
3.4.12.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**6*(a+I*a*tan(d*x+c))**(5/2),x)
 
output
Timed out
 
3.4.12.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.92 \[ \int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {i \, {\left (105 \, \sqrt {2} a^{\frac {7}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + \frac {4 \, {\left (105 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{4} - 560 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{5} + 924 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{6} - 384 \, a^{7}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {7}{2}} - 6 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} a + 12 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} a^{2} - 8 \, \sqrt {i \, a \tan \left (d x + c\right ) + a} a^{3}}\right )}}{1536 \, a d} \]

input
integrate(cos(d*x+c)^6*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")
 
output
1/1536*I*(105*sqrt(2)*a^(7/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c 
) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c) + a))) + 4*(105*(I*a*tan( 
d*x + c) + a)^3*a^4 - 560*(I*a*tan(d*x + c) + a)^2*a^5 + 924*(I*a*tan(d*x 
+ c) + a)*a^6 - 384*a^7)/((I*a*tan(d*x + c) + a)^(7/2) - 6*(I*a*tan(d*x + 
c) + a)^(5/2)*a + 12*(I*a*tan(d*x + c) + a)^(3/2)*a^2 - 8*sqrt(I*a*tan(d*x 
 + c) + a)*a^3))/(a*d)
 
3.4.12.8 Giac [F(-1)]

Timed out. \[ \int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^6*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")
 
output
Timed out
 
3.4.12.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^6(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\int {\cos \left (c+d\,x\right )}^6\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \]

input
int(cos(c + d*x)^6*(a + a*tan(c + d*x)*1i)^(5/2),x)
 
output
int(cos(c + d*x)^6*(a + a*tan(c + d*x)*1i)^(5/2), x)